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Abstract - The issue of structural formulation of plan generation for

Intelligent Machines is investigated from the perspective of Artificial Intelligence.

Using a relationaldatabase torepresenttheknowledge base and a condition-event

net to model the planning process, itis shown that plans generated by the

formulationdeveloped in thispaper are Petrinet languages and thatany planning

strategy can be achieved by a supervisory planner. The objective of such a

structuralformulation is to outlinea formal framework in term of Mathematical

Logic forplan generationof IntelligentMachines in such a way thatitwillserve as

the foundation of analyticalplan generation atdifferentlevelsof the hierarchical

structureof InteRigentMachines. In other words, thisframework willplay the role

of "domain space" upon which various analyticaldesign approaches such as the

probablisticmethod, the neuralnetwork computing, ere,can be integratedtospecify

theplan generationin both functionalaspectand computational aspect.

Keywords: Intelligent Machine, Relational database, Condition-event net,

Supervisory planner, Petri net Language.



1. INTRODUCTION

The theory of Intelligent Machines is the result of the intersection of the three major

disciplines of Artificial Intelligence, Operation Research, and Control Theory [Saridis 1980]. The

structure of Intelligent Machines is defined to be the structure of hierarchically intelligent control

systems, composed of three levels hierarchically ordered according to the pr_uciple of Increasing

Precision with Decreasing Intelligence, namely: the organization level, the coordination

level, and the execution level [Saridis 1979, 83, 85, 88a]. An Intelligent Machine can be thought

as a machine system which can generate automatically the programms for the given tasks and then

compile and execute them. It is the responsibility of plan generation to assign an Intelligent

Machine the ability of automatic programm generation.

The plan generation of intelligent systems has been one of the most challenging tasks of

Artificial Intelligence from the very beginning. Since Green's resolution-based planner [Green

1969] and Fikes-Nilsson's STRIPS system [Fikes 1971], considerable amount of efforts has

been made to develop the new plan generation theory and to improve the efficiency of the existing

plan generation methods [Warren 1974, Sacerdoti 1974 and 1977, "Fate 1977, Stefik 1981a and

1981b, Wilkins 1984-"85, Chapman 1985, Pednault 1986, and Lffschitz 1987, etc.].

The central issues in plan generation of intelligent systems are the state representation, the

system architecture, and the planning strategy. The state (or situation) representation specifies the

way of describing the knowledge about the environment and the internal system states, and the

way of changing the environment. For most plan generation systems, the first order predicate

calculus and the likes are used in the representation. The system architecture defines on a global

level the framework employed to carry out the plan generation tasks. Some architectures, such as

tropistic agent, knowledge-level agent, and functionally accurate and cooperative system, have

been proposed for single agent and multiple agents [Lesser 1981, Newell 1982, Genesereth

1987]. Heuristics has played the key role in the planning strategy. Most of the planning strategies

in the existing plan generation systems have used heuristic methods, like the depth or breadth-first
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search,the best-f'LrSt search, A* algorithm, means-ends analysis, and their combinations [Fikes

1971, Pearl 1984, Ligeza 1985].

For the analytical design of Intelligent Machines, however, analytical plan generation is

mostly desired. To this end, we try in this paper to formalize the representation, the architecture,

and the strategy of plan generation in terms of some well-formed mathematical concepts developed

in mathematical logical and discrete event theory. The relational database is used to represent the

knowledge of the Intelligent Machine. The condition event net is introduced to model the planning

process. The supervisory control method in the theory of discrete event system is employed as a

general mechanism to specify the planning strategy. The possibility of implementing the analytical

methods like probabilistic and neural network computing within the proposed the plan generation

fi'amework is discussed.

2. KNOWLEDG BASE REPRESENTATION

The machine knowledge, or simply, the knowledge, of an Intelligent machine reflects

primarily in three aspects, that is, the knowledge about the environment, the knowledge about its

own ability, and the knowledge about the causal relationship between the environment and its

ability.

The level of abstraction of the knowledge of an Intelligent Machine varies in the different

levels of the Machine, leading to different patterns of combination of the three aspects of the

knowledge. In the lowest level of Intelligent Machine, i.e., the execution level, these three aspects

of the knowledge are inextricably integrated in the form of real-time executable procedures and

there is no point to discuss them separately. In the higher levels of Intelligent Machine, i.e., the

organization and coordination levels, however, a clear distinguishtion among these three aspects is

essential for the smactural formulation of plan generation since the knowledge there is basically

descriptive one.
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The knowledge about environment includes the generic or the specific objects recognized,

the properties perceived, and the relationships among the perceived properties known by the

Intelligent Machine. For example, An object designated as container may be recognized by an

Intelligent Machine in the organization level; a container may be empty orfu/l, properties

perceived about container by the Intelligent Machine, and either empty or full, but not both, is true

at any time for a container, a relation between the two properties known by the Intelligent

Machine. Note that a container in the organization level late may turn out to be a glass or a cup in

the coordination level.

We f'md that an elegant representation of such knowledge can be provided by a relational

database [Reiter 1984, Yang 1986] (or more generally, a deductive database [Lloyd 1987]). A

relational database is a triple DB---(I.,, T, IC) where L=(A, W) is a relational language with

A-(V, O, P) as its alphabet and W as the well-formed formulas (wffs) on A. Specifically,

V = {x, y, z, ... } is the infinite set of variables.

O -{ol, o2, ..., os} is the finite set of constants representing the name of objects

recognized by the Intelligent Machine.

P ={P.', P2 .... , P,n} is the finite set of predicates representing the name of properties

perceived by the Intelligent Machine.

Tr.zW is a (generalized) relational theory , that is, T contains exclusively the domain

closure axioms, the unique name axioms, the axioms for the equality, and the completion axioms

for each predicates but equality [Reiter 1984]. T describes what an Intelligent Machine knows

about the properties of objects and their relationships.

IC_"W is a set of wffs, called integrity constraints. The integrity constraints corresponds

to the so-called staile integrity constraints or state laws in [Nicolas 1978]. Such constraints,

specifying the facts which are not changeable under the actions of the Intelligent Machine, are

meant to be satisfied by any state of the database.

It should be noted that we consider a relational database from the point of proof-theoretic

view, not the point of model-theoreilc view. As been pointed out in by [Reiter 1984], from the
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point of proof-theoretic view the relational databases can be perceived as special kinds of fh'st

order theories, therefore one can generalized those those theories in order to provide solution to a

variety of questions. For our purpose, the most important thing is that the use of relational

databases from the proof-theoretic view opens ways to apply various methods in the theory of

mathematical logic in the plan generation of Intelligent Machine. We will, however, not abandon

the model-theoretic view absolutely. As it can be seen later that the model-theoretic view will lead

to a condition-event net formalism for the planing processes naturally.

The knowledge about its own ability of an InteUigent Machine is characterized by the

actions which can be taken by the Intelligent Machine. Each action corresponds to an action

routine (i.e., a sequence of actions in the lower level) whose execution causes the Intelligent

Machine to make certain actions which would physically change the its state and the environment

An action set, Af{al(Xl), a2(x2), ..., an(Xu)}, is used to represent these actions, where x in a(x)

is the parameter sequence of action a(x). For example, grasp(x) is an action representing the

routine to make a Robot to grasp the object x. An event associated with an action a(x) is an

instance of applying the action to some objects, i.e., a(o), where o is a tuple of the constants of

the L's alphabet. Events are the basic elements from which a plan is consmaeted. The notation

E(A)={a(o)l a(x)e A and o is a tuple of the constants} represents the set of all events associated

with the actions in A. A plan s of the Intelligent Machine is defined to be any string on E(A), i.e.,

se E(A)*.

The knowledge about tthe causal relationship between the environment and its ability is

expressed by the constraints imposed on the actions and the effects of applying the actions.The

constraints and effects can also be considered as the pre- and post-conditions of actions and be

described by a mapping F from actions to the pairs of wffs, i.e., F:A--->W×W, where

F(a(x))=(Wl(x), W2(x)), Wl(x)=Wn^W12^...^Wls. W2(x)=W21^W_^...^W2h. Wij are atomic

formulas and the only free variables in Wij are those in x. For example, F(grasp(x))=

0_lear(Robot,x)aHandEmpty(Robot), Hold(Robot, x)), tells that in order to grasp the object x, the

Robot must be near x and with its hand empty, the result of the action is that the Robot holds x.
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An action a(x) is applicable in the database DB iff its precondition is true in DB, i.e.,

when F(a(x))=(Wl(x), W2(x)) and there exists a constant tuple d such that T=_W](d), i.e.,

Wl(d) is true can be derived from T. Once the action is applied with respect to objects d, Wl(d)

willbe retractedfrom and W2(d) willbe assertedintothe theory T respectively,resultingin a

corresponding modificationin the completion axioms for the relatedpredicatesinT.In thisway

the theory T of DB ischanged to a new theory T', denoted as T'=(T, a(d)),correspondingly,

DB toDB'=(DB, a(d)).A plan isapplicablein DB iffallthe actionsin the plan arc applicablein

the database resultedfrom the lastactionapplication.Let Lt(A) denote the setof allplans on A

applicablein DB, calledthe compatible plans on A. For any plan s in L,(A), (T, s)and 0DB, s)

arc used to representthe finaltheory and database resulted from applying the plan s on DB,

respectively.

The above descriptiondefinesformally a representionfor the knowledge of an IntcUigent

Machine, we will call the tripleKB=(DB, A, F) as the knowledge base of the Intelligent

Machine.

To describe the interactionbetween an IntcUigent Machine and itsusers,the command

language isintroduced.The command language isthe language used to specify the tasks tobe

accomplished by the IntelligentMachine. We definethe command language in a similarway as

thatfor the quarry language of the relationaldatabase [Reitcr78]. Specifically,a command for

L=(A, W) isany express of the form <x IW(x)> where

1.x denotes the sequence Xl,x2, ...,xn, and xi'sare variablesof A;

2.W(x) e W and the only freevariablesinW(x) are those in x.

I.,ctDB=0L, T, IC) be a relationaldatabase, then a command for L is said to be

applicable to DB. The command language of DB is defined to be the set of allcommands

applicableto DB. Since,obviously, a command applicableto DB isalso applicableto (DB, s)

for any se La(A), the command language for a knowledge base KB---0DB, A, F) of an Intelligent

Machine, denoted as I.¢om,isthe the command language of DB.
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Assuming c=<x IW(x)>¢ Loom is a command, c is said to be executable by the Intelligent

Machine ff and only ff there exist a string sE La(A) and a constant tuple o such that (T, s)=)W(o).

There may be more than one plan can be used to execute the command c = <x IW(x)>, let

L(c,A)f(s I sE La(A) and (T, s)=,W(o) for some constant tuple o}, then L(c,A) is the set of all

plans which can be used to accomplish the task c. We call Lo(A)= ucG Loom L(c,A) the set of

compatible and complete plans of the Intelligent Machine. All the tasks can be accomplished by the

Intelligent Machine is U=[c Ice _ is executable by Intelligent Machine}. Note that U might be

an _te set.

3. CONDITION EVENT NET

To formalize the planning processes, we first introduce the condition-event net developed

in [Wang 1988a].

Let D be a set. A term on D is either an element of D or a variable on D. Similar to the

concept of "universe of discourse" introduced by [Zadeh 1971], a world of D is a subset of the set

which contains D and which is generated from D by a finite application of operation +(union),

x(direct product), and _D(lX)wer set). A place p over D is a variable on _t(W), where W is a world

of D. W is called the doma/n of p, denoted by D(p)fW. If Pl and P2 are two places with the same

domain, then Pl + P2 and Pl - P2 are defined to the union and difference sets of Pl and P2,

respectively.

A statement s on D is a pair s=(p, t),where p is a place over D and t is a term on D(p). s is

called a ground statement iff t is an element, otherwise called a variable statement. A ground

statement sf(p, t) is true iff tEp, otherwise s is false. Let P be a set of places over D, a condition

C on P over D is a collection of statements C=(sb s2, ..., Sk}, Siffi(pi,t0, Pie P, with {Pb P2, ...,

Pk} as its place set and [tb t2, ..., tk} its term set. A condition C is ground iff all the statements in

C are ground. A ground condition C is true iff all the statements in C are true, otherwise C is

false. We use C(P, D) to denote the set of all conditions on P over D.
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where

Definition : A condition-event (C-E) net structu_, CE, is a 4-mple, CE={O, A, P, F}

0 ={01, 02, ..., os} is the finite set of object s, sk,O;

A ={a], a2 .... , an} is the finite set of actions, m_O;

P={P], P2, ..., Pn} is the finite set of places, n_O;

F: A--->C(P, D)xC(P, D) is a condition function, a mapping

frona actions to condition pairs on P over O.

Let F(ai)ffi(Cil, Ci2) be the condition pair associated with the action ai, we call Cil the

precondition of ai, denoted by Pre(ai)=Cil, and Ci2 the postcondition of ai, denoted by

Post(a'0=Ci2. A place pj is an input place of ai iff it belongs to the place set of Pre(aO; pj is an

output place of ai iff it belongs to the place set of Post(at). The parameter set of action ai is the set

of variables occurring in the term set of Pre(a'0 or that of Post(ai).

As for Petri net, we can introduced the concepts such as the C-E net graph, the C-E net

state space, the marking of C-E net, the execution rule (i.e., enabled, fire, etc.), the next-state

function, etc., in similar way. For example, the state of a C-E net is defined to the values of its

places. Obviously, a C-E net reduces to a Petri net when there is just one object and all the places

have the same domain. It also can be shown for any C-E net there exists an equivalent, but usually

quite large, Petri net. Therefore, even they have the same expression power, it is more

convenience to use C-E net as model for the planning process, especially the places in C-E net is

closely related with the predicates as can be seen below.

To formalize the planning process of building plans using the actions in a selected subset of

the action set A by a C-E net, it is necessary to reinterpret the predicate in term of place. In the

standard interpretation for the first order logic theory, this is invalid since a predicate there is

interpreted as a fixed subset of some product space of a designated domain [Mendelson 1979]. In

the present problem, however, the application of actions on a database changes its theory and,
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consequently, changes the subsets represented by the corresponding predicates, since it has been

proved in [Reiter 1984] there is one-to-one corresponding between the theories and models for the

relational database. Therefore it is quite naturally to describe the predicates as the variable subsets,

i.e., as the place, correspondingly, the atomic formulae as the statements, the conjunctive wffs of

atomic formulae as the conditions, for the plan generation problem. With these Rlustrations, given

a subset B of the action set A, a C-E net can be constructed as follow:

CE(B)_(O, B, P, Fb) where

O is the constant set of the database of the Intelligent Machine.

P is the finite predicate set of the database of the Intelligent Machine.

Fb is the restriction of F of the Intelligent Machine on the subset B.

CE(B) is called the C-E net associated with the action subset B. The planning process of

building plans using the actions in B now can be considered as the firing process of actions of the

C-E net CE(B), i.e., the executing of actions on CE(B). Let 8 be the next-state function and m0 be

the initial state of the C-E net CE(B) which can be determined fi'om the database DB. Clearly,

La(B) is the set of all firing sequences of actions in B from the initial state, i.e., L_(B)={s

Is_ E(B)* and 8(s,m0) is defined}. For convenience, if m=8(s,mo), we write (T, m)-(T, s).

4. THE MECHANISM OF PLAN GENERATION

To build plans for a given task described by a command, the fast step to be carried out is to

select a set of appropriate actions for the accomplishment of the task. This can be represented by a

mapping y from commands to the subsets of the action set A, i.e.

T. Lcom -oP(A)

the mapping y can expressed by a binary vectors where a 1-component indicates the

corresponding action is selected (therefore, is active) and a 0-component indicates the
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corresponding action is not (therefore, is inactive). Note that for the most of researches in

Artificial Intelligence, T(c)=A for all c¢ I._. For the cases of large number of actions, this may

lead to poor efficiency. Generally, it might be very difficult to determine the ")mapping, however,

the probabilistic version of T may the computed and learned efficiently by means of neural

network as indicated in [Saridis 1988b].

For a given command c=<x IW(x)), a marked C-E net, CE(c,Bc), i.e., a C-E net with a

initial state and a goal set can be defined as:

CE(c,Bc)=(mo, CE(Bc), too, Oc) where

CE(Bc) is the C=E net associated with Bc--T(c);

m0 is the initial state of CE(Bc) which can be obtained from the database DB;

Gc-{ml m is a state of CE(B¢) and (T, m)=_W(o) for some constant tuple o}.

CE(c,B¢) is called the C-E net associated with the command c. Since C-E net and Petri net

are equivalent, it is easy to show that a C-E net with a initial state and a goal set is equivalent to a

labelledPetrinet with identitylabellingfunction% ['Peterson1981].Therefore,L(c),the setof all

plans on 3(c)which achieve the taskc,isa L-type PeA" net lauguage, since G¢ isalways a finite

set of statesfor a relationaldatabase. This resultclarifiesthe lauguage complexity of plans

generated with the formulation described.

No resuit has been given about the lauguage property of plans as for as we know. For an

Intelligent Machine which can execute very general tasks, a compiling system is required to

process the plans generated, therefore the lauguage property of plans is useful and imperative in

the case. The formal model for the coordination level of Intelligent Machines developed in [Wang

1988b] is capable of compiling the Petri net language in a distributed and concurrent way. Note

% Note that, with the labelling function, the action with more than one preconditions can
be described by the different actions with the same label
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that few applications have been found for Petri net lauguage, this result reveals the importance of

Petri net language in the plan generation problem.

A general mechanism to implement the planning strategy using the set-up described now

can be specified. Since any planning strategy is just some special method used to find

(heuristically or analytically) one or more string(s) of the language L(c) for the givens task c.

Recalling the supervisory control theory of discrete event systems [Ramadge 1982 and 85], It

says for a given language L(G) with G as the generator (an automation, possibly an infinite one),

any of its sub-language K can be specified by a supervisor S such that K = L(S/G), where S/G is

the language generator of S supervising G. Basing on this fact, Ramadge-Wonham's supervisory

control method can be used as the general mechanism of plan generation. To this end, for the C-E

net CE(c,Bc), we define a supervisory planner, S(c), to be a pair

S(c)=(So, q_)where

Se =(2_, X, _, xo, Xn0 is an automaton with

S=E(y (c)) as the input alphabet;

X as the state set;

_:_v,X---_X as the transition function;

xo as the initial state;

Xm as the set of final states;

_p'._xX--_{O,1 } is aplan law.

Taking CE(c,Bc) as a plan generator whose output is the firing sequence of actions, S(c) is

considered to be driven externally by the stream of output actions of CE(c,Be); while in turn, with

S in state x, action events of CE(c,Bc) are subject to the plan law _. If q_(a(d), x) = 0 then a(d) is

'disabled' (prohibited from firing), while if q_(a(d), x) = 1 then a(d) is 'permitted' (but may not be

enabled). The enabling condition of CE(c,Bc) under supervision of S(c) therefore is replaced by:

an action event is enabled iff it is both enabled in CE(c,Bc) and permitted by S(c). As in [Ramadge
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1982], we use S(c)/CE(c,Bc)to denote the resulting planning structure, and 8_ to denote the

modified next-state function.

Let L(S(c)/CE(c,Bc))-(sl se E(7(c))', 8_(s,m0) and _(s,x0) are defined] and

Lm(S(c)/CE(c,Bc)) -{sl se E(7(c))*, 8q,(s,m0)¢ Gc and _(s,x0)e Xm]. We have the following

important theorem:

Theorem: Let K be any subset of L(c), then there exists a supervisory planner S(c) such

thatK= L,,,(S(c)ICE(c,B=)).

The proof of the theorem is similar to that of the corresponding theorem in [Rarnadge

1982]. This theorem claims that any planning strategy can be specified by constructing a special

supervisory planner. Various results, such as modular feedback logic [Ramadge 1986], modular

synthesis [Wonham 1988], decentralized control [Lin 1986] and other reduction methods [Vaz

1986] in the supervisory control theory seem to be useful in the structural construction of the

planners.

Like the mapping 7, itmay be very difficult,ifnot impossible,toconstructthe plan law q_.

In the researchworks of plan generationin ArtificialIntelligence,heuristicsisusuallyused inthe

determination of the plan law. Since cpis also can be represented as a binary vectors,some

probablisticfashionof q)may be computed and learnedthrough neuralnetwork as forthe mapping

7.Note thatthereisno directway touse the neuralnetwork togenerateplans,sincethe number of

nodes needed to representthe plans isundefined, varying in an infiniterange. Therefore the

supervisory planner approach may provide an indirectway to compute the plans using neural

network.

As the knowledge base KB representing the knowledge of IntelligentMachines, the

mapping 7 and the supervisoryplannersrepresentingtheintelligenceof IntelligentMachines in the

plan generation.
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5. DISCUSSION AND CONCLUSION

A structural formulation of plan generation is developed with the objective of setting up a

formal framework in term of well-formed mathematical models for plan generation of Intelligent

Machines such that it will serve as the foundation of analytical plan generation at different levels of

the hierarchical structure of Intelligent Machines. The relational database from the proof-theoretic

view is used to represent the knowledge base of Intelligent Machines. Using the condition-event

net as the formalism for planning process, it is shown that plans generated by the formulation are

Petri net languages, an important result for the plan compiling and coordinating system. A

supervisory planning approach is suggested and it is also proved that any planning strategy can be

achieved by a supervisory planner. The possible ways of implementing the analytical methods

within the proposed the plan generation framework is discussed in the context.

Further investigations of integrating the analytical methods into the plan structure are

required. Once such integration is achieved, some analytical performance measures like entropies

can be calculated for the different functional parts of the plan generation.

Also, generally, a task described by a command c can not expressed directly as the

consequence of applying the actions in the database, however, it may be proved basing on the

action consequence. Therefore a theorem prover is required in general for plan generation. There

are several well-developed theorem provers available now. A plan generation system may even

have more than one theorem provers, treating different type of tasks with different theorem

prover.
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